Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.944
Filtrar
1.
Respir Physiol Neurobiol ; 322: 104217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237884

RESUMO

Central respiratory chemoreceptors are cells in the brain that regulate breathing in relation to arterial pH and PCO2. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the neural network that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural control of breathing over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site. Here, we discuss the current definition of chemoreceptor neurons in the RTN and describe how this definition has evolved over time. We then summarize the results of studies that use loss-of-function approaches to evaluate the effects of disrupting the function of RTN neurons on respiration. These studies offer evidence that RTN neurons are indispensable for the central respiratory chemoreflex in mammals and exert a tonic drive to breathe at rest. Moreover, RTN has an interdependent relationship with oxygen sensing mechanisms for the maintenance of the neural drive to breathe and blood gas homeostasis. Collectively, RTN neurons are a genetically-defined group of putative central respiratory chemoreceptors that generate CO2-dependent drive that supports eupneic breathing and stimulates the hypercapnic ventilatory reflex.


Assuntos
Células Quimiorreceptoras , Bulbo , Animais , Células Quimiorreceptoras/fisiologia , Bulbo/fisiologia , Hipercapnia , Respiração , Neurônios/fisiologia , Dióxido de Carbono , Mamíferos
2.
Physiol Rep ; 12(2): e15915, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38243332

RESUMO

A mathematical model was proposed to predict the role played by apneic threshold in periodic breathing in preterm infants. Prior models have mainly applied linear control theory which predicted instability but could not explain sustained periodic breathing. Apneic threshold to CO2 which has been postulated to play a major role in infant periodic breathing is a nonlinear effect and cannot be described by linear theory. Another previously unexplored nonlinear factor affecting instability is brain vascular volume change with CO2 which affects time delay to chemoreceptors. The current model explored the influences of apneic threshold, central and peripheral chemoreceptor gains, cardiac output, lung volume, and circulatory time delay on periodic breathing. Apneic threshold was found to play a major role in ventilatory responses to spontaneous sighs. Sighs led to apneic pauses followed by periods of periodic breathing with peripheral chemoreceptor CO2 gain, cardiac output, and lung volume were at reported normal levels. Apneic threshold when exceeded was observed to cause an asymmetry in the periodic breathing cycling and an increased periodic breathing frequency. Sighs in infants occur frequently enough to lead to repeated stimulation within the epoch duration of periodic breathing for a single sigh. Multiple sighs may then play a major role in promoting continuous periodic breathing in infants. Peripheral chemoreceptor gain estimated using endogenous CO2 led to validated predicted periodic breathing cycle duration as a function of age. Brain vascular volume increase with CO2 contributes to periodic breathing in very young (1-2 day old) preterm infants.


Assuntos
Recém-Nascido Prematuro , Respiração , Lactente , Humanos , Recém-Nascido , Recém-Nascido Prematuro/fisiologia , Dióxido de Carbono , Apneia , Células Quimiorreceptoras/fisiologia
3.
Exp Physiol ; 109(4): 461-469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38031809

RESUMO

An adequate supply of O2 is essential for the maintenance of cellular activity. Systemic or local hypoxia can be experienced during decreased O2 availability or associated with diseases, or a combination of both. Exposure to hypoxia triggers adjustments in multiple physiological systems in the body to generate appropriate homeostatic responses. However, with significant reductions in the arterial partial pressure of O2, hypoxia can be life-threatening and cause maladaptive changes or cell damage and death. To mitigate the impact of limited O2 availability on cellular activity, O2 chemoreceptors rapidly detect and respond to reductions in the arterial partial pressure of O2, triggering orchestrated responses of increased ventilation and cardiac output, blood flow redistribution and metabolic adjustments. In mammals, the peripheral chemoreceptors of the carotid body are considered to be the main hypoxic sensors and the primary source of excitatory feedback driving respiratory, cardiovascular and autonomic responses. However, current evidence indicates that the CNS contains specialized brainstem and spinal cord regions that can also sense hypoxia and stimulate brain networks independently of the carotid body inputs. In this manuscript, we review the discoveries about the functioning of the O2 chemoreceptors and their contribution to the monitoring of O2 levels in the blood and brain parenchyma and mounting cardiorespiratory responses to maintain O2 homeostasis. We also discuss the implications of the chemoreflex-related mechanisms in paediatric and adult pathologies.


Assuntos
Corpo Carotídeo , Hipóxia , Animais , Humanos , Criança , Células Quimiorreceptoras/fisiologia , Corpo Carotídeo/metabolismo , Respiração , Pulmão , Mamíferos/metabolismo , Oxigênio/metabolismo
5.
J Appl Physiol (1985) ; 135(6): 1446-1456, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942527

RESUMO

Normobaric hyperoxia stimulates ventilation (V̇e) in a time- and dose-dependent manner. Whether this occurs via an oxygen (O2)-specific mechanism or secondary to carbon dioxide (CO2) retention at the central chemoreceptors remains unclear. We measured the ventilatory response to hyperoxic CO2 rebreathing with O2 clamped at increasingly higher pressures. We hypothesized that the V̇e versus Pco2 relationship is fixed and independent of Po2. On four occasions, 20 participants (10 F; mean ± SD age: 24 ± 4 yr) performed three repetitions of modified rebreathing in four, randomized, isoxic-hyperoxic conditions: mild: Po2 = 150 mmHg; moderate: Po2 = 200 mmHg; high: Po2 = 300 mmHg; and extreme: Po2 ≈ 700 mmHg. Breath-by-breath V̇e, end-tidal CO2 ([Formula: see text]), and O2 ([Formula: see text]) were measured by pneumotach and gas analyzer. For each rebreathing trial, the [Formula: see text] at which V̇e rose was identified as the ventilatory recruitment threshold (VRT, mmHg), data before VRT provided baseline V̇e (V̇eBSL, L·min-1) and the slope of the response above VRT gave central chemoreflex sensitivity (V̇eS, L·min-1·mmHg-1). For each condition, VRT, V̇eBSL, and V̇eS from like-trials were averaged, and repeated measures ANOVA assessed between-condition differences. There were no effects of [Formula: see text] on V̇eBSL (mild: 7.4 ± 4.2 L·min-1; moderate: 6.9 ± 4.2 L·min-1; high: 6.5 ± 3.7 L·min-1; extreme: 7.5 ± 2.7 L·min-1; P = 0.24), VRT (mild: 42.8 ± 3.2 mmHg; moderate: 42.5 ± 2.7 mmHg; high: 42.3 ± 2.7 mmHg; extreme: 41.8 ± 2.7 mmHg; P = 0.07), or V̇eS (mild: 4.88 ± 2.6 L·min-1·mmHg-1; moderate: 4.76 ± 2.2 L·min-1·mmHg-1; high: 4.81 ± 2.3 L·min-1·mmHg-1; extreme: 4.39 ± 1.9 L·min-1·mmHg-1; P = 0.41). The V̇e-Pco2 relationship is unaltered across a range of mild to extreme Po2. Brief exposure to normobaric hyperoxia may not independently stimulate breathing nor does it alter central chemoreflex sensitivity.NEW & NOTEWORTHY Normobaric hyperoxia stimulates ventilation (V̇e) in a time- and dose-dependent manner. Whether this occurs directly or indirectly through heightened central carbon dioxide pressure (Pco2) or via central chemoreflex sensitization is unclear. Participants who performed modified rebreathing at high oxygen pressures (Po2) of 150, 200, 300, and ≈700 mmHg exhibited no changes to their ventilatory responses to Pco2. Brief exposure to normobaric hyperoxia may not independently stimulate breathing nor does it alter central chemoreflex sensitivity.


Assuntos
Hiperóxia , Adulto , Humanos , Adulto Jovem , Dióxido de Carbono , Células Quimiorreceptoras/fisiologia , Hiperventilação , Oxigênio , Respiração , Masculino , Feminino
6.
Artigo em Inglês | MEDLINE | ID: mdl-37946073

RESUMO

The carotid body (CB) is a polymodal chemosensory organ that plays an essential role in initiating respiratory and cardiovascular adjustments to maintain blood gas homeostasis. Much of the available evidence suggests that chronic hypoxia induces marked morphological and neurochemical changes within the CB, but the detailed molecular mechanisms by which these affect the hypoxic chemosensitivity still remain to be elucidated. Dysregulation of the CB function and altered oxygen saturation are implicated in various physiological and pathophysiological conditions. Knowledge of the morphological and functional aspects of the CB would improve our current understanding of respiratory and cardiovascular homeostasis in health and disease.


Assuntos
Corpo Carotídeo , Humanos , Corpo Carotídeo/fisiologia , Células Quimiorreceptoras/fisiologia , Hipóxia , Artérias , Coração
7.
Adv Anat Embryol Cell Biol ; 237: 13-35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946075

RESUMO

The carotid body (CB) is the main peripheral arterial chemoreceptor that registers the levels of pO2, pCO2 and pH in the blood and responds to their changes by regulating breathing. It is strategically located in the bifurcation of each common carotid artery. The organ consists of "glomera" composed of two cell types, glomus and sustentacular cells, interspersed by blood vessels and nerve bundles and separated by connective tissue. The neuron-like glomus or type I cells are considered as the chemosensory cells of the CB. They contain numerous cytoplasmic organelles and dense-cored vesicles that store and release neurotransmitters. They also form both conventional chemical and electrical synapses between each other and are contacted by peripheral nerve endings of petrosal ganglion neurons. The glomus cells are dually innervated by both sensory nerve fibers through the carotid sinus nerve and autonomic fibers of sympathetic origin via the ganglioglomerular nerve. The parasympathetic efferent innervation is relayed by vasomotor fibers of ganglion cells located around or inside the CB. The glial-like sustentacular or type II cells are regarded to be supporting cells although they sustain physiologic neurogenesis in the adult CB and are thus supposed to be progenitor cells as well. The CB is a highly vascularized organ and its intraorgan hemodynamics possibly plays a role in the process of chemoreception.


Assuntos
Corpo Carotídeo , Animais , Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/fisiologia , Neurônios , Artéria Carótida Primitiva , Gânglios , Mamíferos
8.
Adv Anat Embryol Cell Biol ; 237: 49-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946077

RESUMO

The mammalian carotid body (CB) is a polymodal chemoreceptor, which is activated by blood-borne stimuli, most notably hypoxia, hypercapnia and acidosis, thus ensuring an appropriate cellular response to changes in physical and chemical parameters of the blood. The glomus cells are considered the CB chemosensory cells and the initial site of chemoreceptor transduction. However, the molecular mechanisms by which they detect changes in blood chemical levels and how these changes lead to transmitter release are not yet well understood. Chemotransduction mechanisms are by far best described for oxygen and acid/carbon dioxide sensing. A few testable hypotheses have been postulated including a direct interaction of oxygen with ion channels in the glomus cells (membrane hypothesis), an indirect interface by a reversible ligand like a heme (metabolic hypothesis), or even a functional interaction between putative oxygen sensors (chemosome hypothesis) or the interaction of lactate with a highly expressed in the CB atypical olfactory receptor, Olfr78, (endocrine model). It is also suggested that sensory transduction in the CB is uniquely dependent on the actions and interactions of gaseous transmitters. Apparently, oxygen sensing does not utilize a single mechanism, and later observations have given strong support to a unified membrane model of chemotransduction.


Assuntos
Corpo Carotídeo , Animais , Corpo Carotídeo/fisiologia , Células Quimiorreceptoras/fisiologia , Hipercapnia , Hipóxia , Mamíferos , Oxigênio
9.
Adv Anat Embryol Cell Biol ; 237: 123-138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946080

RESUMO

Emerging evidence shows that the carotid body (CB) dysfunction is implicated in various physiological and pathophysiological conditions. It has been revealed that the CB structure and neurochemical profile alter in certain human sympathetic-related and cardiometabolic diseases. Specifically, a tiny CB with a decrease of glomus cells and their dense-cored vesicles has been seen in subjects with sleep disordered breathing such as sudden infant death syndrome and obstructive sleep apnea patients and people with congenital central hypoventilation syndrome. Moreover, the CB degranulation is accompanied by significantly elevated levels of catecholamines and proinflammatory cytokines in such patients. The intermittent hypoxia stimulates the CB, eliciting augmented chemoreflex drive and enhanced cardiorespiratory and sympathetic responses. High CB excitability due to blood flow restrictions, oxidative stress, alterations in neurotransmitter gases and disruptions of local mediators is also observed in congestive heart failure conditions. On the other hand, the morpho-chemical changes in hypertension include an increase in the CB volume due to vasodilation, altered transmitter phenotype of chemoreceptor cells and elevated production of neurotrophic factors. Accordingly, in both humans and animal models CB denervation prevents the breathing instability and lowers blood pressure. Knowledge of the morphofunctional aspects of the CB, a better understanding of its role in disease and recent advances in human CB translational research would contribute to the development of new therapeutic strategies.


Assuntos
Corpo Carotídeo , Insuficiência Cardíaca , Hipertensão , Animais , Humanos , Corpo Carotídeo/fisiologia , Células Quimiorreceptoras/fisiologia , Pressão Sanguínea/fisiologia
10.
J Neurosci ; 43(30): 5501-5520, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37290937

RESUMO

Respiratory chemoreceptor activity encoding arterial Pco2 and Po2 is a critical determinant of ventilation. Currently, the relative importance of several putative chemoreceptor mechanisms for maintaining eupneic breathing and respiratory homeostasis is debated. Transcriptomic and anatomic evidence suggests that bombesin-related peptide Neuromedin-B (Nmb) expression identifies chemoreceptor neurons in the retrotrapezoid nucleus (RTN) that mediate the hypercapnic ventilatory response, but functional support is missing. In this study, we generated a transgenic Nmb-Cre mouse and used Cre-dependent cell ablation and optogenetics to test the hypothesis that RTN Nmb neurons are necessary for the CO2-dependent drive to breathe in adult male and female mice. Selective ablation of ∼95% of RTN Nmb neurons causes compensated respiratory acidosis because of alveolar hypoventilation, as well as profound breathing instability and respiratory-related sleep disruption. Following RTN Nmb lesion, mice were hypoxemic at rest and were prone to severe apneas during hyperoxia, suggesting that oxygen-sensitive mechanisms, presumably the peripheral chemoreceptors, compensate for the loss of RTN Nmb neurons. Interestingly, ventilation following RTN Nmb -lesion was unresponsive to hypercapnia, but behavioral responses to CO2 (freezing and avoidance) and the hypoxia ventilatory response were preserved. Neuroanatomical mapping shows that RTN Nmb neurons are highly collateralized and innervate the respiratory-related centers in the pons and medulla with a strong ipsilateral preference. Together, this evidence suggests that RTN Nmb neurons are dedicated to the respiratory effects of arterial Pco2/pH and maintain respiratory homeostasis in intact conditions and suggest that malfunction of these neurons could underlie the etiology of certain forms of sleep-disordered breathing in humans.SIGNIFICANCE STATEMENT Respiratory chemoreceptors stimulate neural respiratory motor output to regulate arterial Pco2 and Po2, thereby maintaining optimal gas exchange. Neurons in the retrotrapezoid nucleus (RTN) that express the bombesin-related peptide Neuromedin-B are proposed to be important in this process, but functional evidence has not been established. Here, we developed a transgenic mouse model and demonstrated that RTN neurons are fundamental for respiratory homeostasis and mediate the stimulatory effects of CO2 on breathing. Our functional and anatomic data indicate that Nmb-expressing RTN neurons are an integral component of the neural mechanisms that mediate CO2-dependent drive to breathe and maintain alveolar ventilation. This work highlights the importance of the interdependent and dynamic integration of CO2- and O2-sensing mechanisms in respiratory homeostasis of mammals.


Assuntos
Bombesina , Dióxido de Carbono , Humanos , Camundongos , Masculino , Feminino , Animais , Bombesina/metabolismo , Respiração , Células Quimiorreceptoras/fisiologia , Hipercapnia , Homeostase , Camundongos Transgênicos , Oxigênio/metabolismo , Neurônios/fisiologia , Centro Respiratório , Mamíferos
11.
Adv Exp Med Biol ; 1427: 99-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322340

RESUMO

Coronary heart disease (CHD) is a prevalent cardiovascular disease characterized by coronary artery blood flow reductions caused by lipid deposition and oxidation within the coronary arteries. Dyslipidemia is associated with local tissue damage by oxidative stress/inflammation and carotid bodies (CB) peripheral chemoreceptors are heavily modulated by both reactive oxygen species and pro-inflammatory molecules (i.e., cytokines). Despite this, it is not know whether CB-mediated chemoreflex drive may be affected in CHD. In the present study, we evaluated peripheral CB-mediated chemoreflex drive, cardiac autonomic function, and the incidence of breathing disorders in a murine model of CHD. Compared to age-matched control mice, CHD mice showed enhanced CB-chemoreflex drive (twofold increase in the hypoxic ventilatory response), cardiac sympathoexcitation, and irregular breathing disorders. Remarkably, all these were closely linked to the enhanced CB-mediated chemoreflex drive. Our results showed that mice with CHD displayed an enhanced CB chemoreflex, sympathoexcitation, and disordered breathing and suggest that CBs may be involved in chronic cardiorespiratory alterations in the setting of CHD.


Assuntos
Corpo Carotídeo , Insuficiência Cardíaca , Camundongos , Animais , Corpo Carotídeo/fisiologia , Células Quimiorreceptoras/fisiologia , Coração , Sistema Nervoso Autônomo , Hipóxia
12.
Adv Exp Med Biol ; 1427: 107-114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322341

RESUMO

Heart failure (HF) is a prevalent disease in elderly population. Potentiation of the ventilatory chemoreflex drive plays a pivotal role in disease progression, at least in part, through their contribution to the generation/maintenance of breathing disorders. Peripheral and central chemoreflexes are mainly regulated by carotid body (CB) and the retrotrapezoid nuclei (RTN), respectively. Recent evidence showed an enhanced central chemoreflex drive in rats with nonischemic HF along with breathing disorders. Importantly, increase activity from RTN chemoreceptors contribute to the potentiation of central chemoreflex response to hypercapnia. The precise mechanism driving RTN potentiation in HF is still elusive. Since interdependency of RTN and CB chemoreceptors has been described, we hypothesized that CB afferent activity is required to increase RTN chemosensitivity in the setting of HF. Accordingly, we studied central/peripheral chemoreflex drive and breathing disorders in HF rats with and without functional CBs (CB denervation). We found that CB afferent activity was required to increase central chemoreflex drive in HF. Indeed, CB denervation restored normal central chemoreflex drive and reduced the incidence of apneas by twofold. Our results support the notion that CB afferent activity plays an important role in central chemoreflex potentiation in rats with HF.


Assuntos
Corpo Carotídeo , Insuficiência Cardíaca , Idoso , Ratos , Humanos , Animais , Células Quimiorreceptoras/fisiologia , Corpo Carotídeo/fisiologia , Fenômenos Fisiológicos Respiratórios , Hipercapnia
13.
Adv Exp Med Biol ; 1427: 127-134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322343

RESUMO

Carotid bodies (CBs) are main peripheral chemoreceptors involved in breathing regulation. Despite the well-known role played by CBs on breathing control, the precise contribution of CBs on the regulation of lung mechanics remains controversial. Accordingly, we study changes in lung mechanics in normoxia (FiO2 21%) and hypoxia (FiO2 8%) in mice with or without functional CBs. For this, we used adult male mice that underwent sham or CB denervation (CBD) surgery. Compared to sham-operated mice, we found that CBD induced an increase in lung resistance (RL) while breathing normoxic air (sham vs. CBD, p < 0.05). Importantly, changes in RL were accompanied by an approximately threefold reduction in dynamic compliance (Cdyn). Additionally, end-expiratory work (EEW) was increased in normoxia in the CBD group. Contrarily, we found that CBD has no effect on lung mechanics during hypoxic stimulation. Indeed, RL, Cdyn, and EEW values in CBD mice were undistinguishable from the ones obtained in sham mice. Finally, we found that CBD induces lung parenchyma morphological alterations characterized by reduced alveoli space. Together our results showed that CBD progressively increases lung resistance at normoxic conditions and suggest that CB tonic afferent discharges are needed for the proper regulation of lung mechanics at rest.


Assuntos
Corpo Carotídeo , Masculino , Animais , Camundongos , Corpo Carotídeo/fisiologia , Pulmão , Células Quimiorreceptoras/fisiologia , Hipóxia , Respiração , Denervação
14.
J Physiol ; 601(12): 2425-2445, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37014129

RESUMO

Increased peripheral chemoreflex sensitivity is a pathogenic feature of human hypertension (HTN), while both central and peripheral chemoreflex sensitivities are reportedly augmented in animal models of HTN. Herein, we tested the hypothesis that both central and combined central and peripheral chemoreflex sensitivities are augmented in HTN. Fifteen HTN participants (68 ± 5 years; mean ± SD) and 13 normotensives (NT; 65 ± 6 years) performed two modified rebreathing protocols in which the partial pressure of end-tidal carbon dioxide ( P ETC O 2 ${P_{{\rm{ETC}}{{\rm{O}}_2}}}$ ) progressively increased while the partial pressure of end-tidal oxygen was clamped at either 150 mmHg (isoxic hyperoxia; central chemoreflex activation) or 50 mmHg (isoxic hypoxia; combined central and peripheral chemoreflex activation). Ventilation ( V ̇ E ${\dot{V}}_{\rm{E}}$ ; pneumotachometer) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded, and ventilatory ( V ̇ E ${\dot{V}}_{\rm{E}}$ vs. P ETC O 2 ${P_{{\rm{ETC}}{{\rm{O}}_2}}}$  slope) and sympathetic (MSNA vs. P ETC O 2 ${P_{{\rm{ETC}}{{\rm{O}}_2}}}$ slope) chemoreflex sensitivities and recruitment thresholds (breakpoint) were calculated. Global cerebral blood flow (gCBF; duplex Doppler) was measured, and the association with chemoreflex responses was examined. Central ventilatory and sympathetic chemoreflex sensitivities were greater in HTN than NT (2.48 ± 1.33 vs. 1.58 ± 0.42 L min-1  mmHg-1 , P = 0.030: 3.32 ± 1.90 vs. 1.77 ± 0.62 a.u. mmHg-1 , P = 0.034, respectively), while recruitment thresholds were not different between groups. HTN and NT had similar combined central and peripheral ventilatory and sympathetic chemoreflex sensitivities and recruitment thresholds. A lower gCBF was associated with an earlier recruitment threshold for V ̇ E ${\dot{V}}_{\rm{E}}$ (R2  = 0.666, P < 0.0001) and MSNA (R2  = 0.698, P = 0.004) during isoxic hyperoxic rebreathing. These findings indicate that central ventilatory and sympathetic chemoreflex sensitivities are augmented in human HTN and perhaps suggest that targeting the central chemoreflex may help some forms of HTN. KEY POINTS: In human hypertension (HTN) increased peripheral chemoreflex sensitivity has been identified as a pathogenic feature, and in animal models of HTN, both central and peripheral chemoreflex sensitivities are reportedly augmented. In this study, the hypothesis was tested that both central and combined central and peripheral chemoreflex sensitivities are augmented in human HTN. We observed that both central ventilatory and sympathetic chemoreflex sensitivities were augmented in HTN compared to age-matched normotensive controls, but no difference was found in the combined central and peripheral ventilatory and sympathetic chemoreflex sensitivities. During central chemoreflex activation, the ventilatory and sympathetic recruitment thresholds were lower in those with lower total cerebral blood flow. These results indicate a potential contributory role of the central chemoreceptors in the pathogenesis of human HTN and support the possibility that therapeutic targeting of the central chemoreflex may help some forms of HTN.


Assuntos
Hiperóxia , Hipertensão , Animais , Humanos , Reflexo/fisiologia , Respiração , Hipóxia , Dióxido de Carbono , Células Quimiorreceptoras/fisiologia
16.
eNeuro ; 10(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941059

RESUMO

The nasal epithelium houses a population of solitary chemosensory cells (SCCs). SCCs express bitter taste receptors and taste transduction signaling components and are innervated by peptidergic trigeminal polymodal nociceptive nerve fibers. Thus, nasal SCCs respond to bitter compounds, including bacterial metabolites, and these reactions evoke protective respiratory reflexes and innate immune and inflammatory responses. We tested whether SCCs are implicated in aversive behavior to specific inhaled nebulized irritants using a custom-built dual-chamber forced-choice device. The behavior of mice was recorded and analyzed for the time spent in each chamber. Wild-type (WT) mice exhibited an aversion to 10 mm denatonium benzoate (Den) or cycloheximide and spent more time in the control (saline) chamber. The SCC-pathway knock-out (KO) mice did not exhibit such an aversion response. The bitter avoidance behavior of WT mice was positively correlated with the concentration increase of Den and the number of exposures. Bitter-ageusic P2X2/3 double KO mice similarly showed an avoidance response to nebulized Den, excluding the taste system's involvement and pointing to an SCC-mediated major contributor to the aversive response. Interestingly, SCC-pathway KO mice showed an attraction to higher Den concentrations; however, chemical ablation of the olfactory epithelium eliminated this attraction attributed to the smell of Den. These results demonstrate that activation of SCCs leads to a rapid aversive response to certain classes of irritants with olfaction, but not gustation, contributing to the avoidance behavior during subsequent irritant exposures. This SCC-mediated avoidance behavior represents an important defense mechanism against the inhalation of noxious chemicals.


Assuntos
Irritantes , Canais de Cátion TRPM , Camundongos , Animais , Irritantes/metabolismo , Aprendizagem da Esquiva , Células Quimiorreceptoras/fisiologia , Canais de Cátion TRPM/metabolismo , Transdução de Sinais
17.
Nat Commun ; 14(1): 1725, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977675

RESUMO

Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats. Purinergic (P2X3) receptors were upregulated two-fold in peripheral chemosensory afferents in heart failure, and when antagonized abolished these episodic discharges, normalized both peripheral chemoreceptor sensitivity and the breathing pattern, reinstated autonomic balance, improved cardiac function, and reduced both inflammation and biomarkers of cardiac failure. Aberrant ATP transmission in the carotid body triggers episodic discharges that via P2X3 receptors play a crucial role in the progression of heart failure and as such offer a distinct therapeutic angle to reverse multiple components of its pathogenesis.


Assuntos
Corpo Carotídeo , Insuficiência Cardíaca , Ratos , Masculino , Animais , Receptores Purinérgicos P2X3 , Células Quimiorreceptoras/fisiologia , Respiração
18.
Exp Physiol ; 108(2): 280-295, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459572

RESUMO

NEW FINDINGS: What is the central question of this study? What are the effects of insulin and insulin-induced hypoglycaemia on carotid body chemoreceptor activity in vivo and how do carotid body chemoreceptor stimulation-mediated cardiorespiratory responses in beagle dogs compare during euglycaemia and insulin-induced hypoglycaemia? What is the main finding and its importance? Intracarotid insulin administration leads to sustained increase in carotid body chemoreceptor activity and respiratory response with significant cardiovascular effects. Insulin-induced hypoglycaemia exacerbated NaCN-mediated carotid body chemoreceptor activity and respiratory response with enhanced cardiovascular reflex response. These findings suggest that insulin-induced hypoglycaemia augments the carotid body chemoreceptors to initiate the adaptive counter-regulatory responses to restore the normoglycaemic condition. ABSTRACT: The carotid body chemoreceptors (CBC) play an important role in the adaptive counter-regulatory response to hypoglycaemia by evoking the CBC-mediated sympathetic neuronal system to restore normoglycaemia. Ex vivo studies have shown varied responses of insulin-induced hypoglycaemia on CBC function, and several in vivo studies have indirectly established the role of CBCs in restoring normoglycaemia in both animals and humans. However, a direct effect of insulin and/or insulin-induced hypoglycaemia on CBC activity is not established in animal models. Therefore, the aim of this study was to evaluate in vivo effects of insulin and insulin-induced hypoglycaemia on CBC activity and cardiorespiration in a preclinical large animal model. The carotid sinus nerve (CSN) activity and cardiorespiratory responses to sodium cyanide (NaCN; 25 µg/kg) were compared before (euglycaemic) and after (hypoglycaemic) intracarotid administration of insulin (12.5-100 µU/dogs) in beagle dogs. Insulin administration increased CSN activity and minute ventilation ( V ̇ $\dot V$ E ) with significant (P < 0.0001) effects on heart rate and blood pressure. Insulin-mediated effects on CSN and cardiorespiration were sustained and the change in V ̇ $\dot V$ E was driven by tidal volume only. Insulin significantly (P < 0.0001) lowered blood glucose level. NaCN-mediated CSN activity and V ̇ $\dot V$ E were significantly (P < 0.0001) augmented during insulin-induced hypoglycaemia. The augmented V ̇ $\dot V$ E was primarily driven by respiratory frequency and partially by tidal volume. The cardiovascular reflex response mediated through CBC stimulation was significantly (P < 0.0001) exacerbated during insulin-induced hypoglycaemia. Collectively, these results demonstrate direct effects of insulin and insulin-induced hypoglycaemia on CBC chemosensitivity to potentiate CBC-mediated neuroregulatory pathways to initiate adaptive neuroendocrine and cardiorespiratory counter-regulatory responses to restore normoglycaemia.


Assuntos
Corpo Carotídeo , Hipoglicemia , Humanos , Cães , Animais , Corpo Carotídeo/metabolismo , Insulina/metabolismo , Células Quimiorreceptoras/fisiologia , Reflexo , Pressão Sanguínea
19.
Am J Respir Crit Care Med ; 207(5): 594-601, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173816

RESUMO

Rationale: Preterm infants are at risk for ventilatory control instability that may be due to aberrant peripheral chemoreceptor activity. Although term infants have increasing peripheral chemoreceptor contribution to overall ventilatory drive with increasing postnatal age, how peripheral chemoreceptor contribution changes in preterm infants with increasing postmenstrual age is not known. Objectives: To evaluate peripheral chemoreceptor activity between 32 and 52 weeks postmenstrual age in preterm infants, using both quantitative and qualitative measures. Methods: Fifty-five infants born between 24 weeks, 0 days gestation and 28 weeks, 6 days gestation underwent hyperoxic testing at one to four time points between 32 and 52 weeks postmenstrual age. Quantitative [Formula: see text] decreases were calculated, and qualitative responses were categorized as apnea, continued breathing with a clear reduction in [Formula: see text], sigh breaths, and no response. Measurements and Main Results: A total of 280 hyperoxic tests were analyzed (2.2 ± 0.3 tests per infant at each time point). Mean peripheral chemoreceptor contribution to ventilatory drive was 85.2 ± 20.0% at 32 weeks and 64.1 ± 22.0% at 52 weeks. Apneic responses were more frequent at earlier postmenstrual ages. Conclusions: Among preterm infants, the peripheral chemoreceptor contribution to ventilatory drive was greater at earlier postmenstrual ages. Apnea was a frequent response to hyperoxic testing at earlier postmenstrual ages, suggesting high peripheral chemoreceptor activity. A clearer description of how peripheral chemoreceptor activity changes over time in preterm infants may help explain how ventilatory control instability contributes to apnea and sleep-disordered breathing later in childhood. Clinical trial registered with www.clinicaltrials.gov (NCT03464396).


Assuntos
Hiperóxia , Síndromes da Apneia do Sono , Humanos , Lactente , Recém-Nascido , Células Quimiorreceptoras/fisiologia , Recém-Nascido Prematuro/fisiologia , Respiração
20.
Biomolecules ; 12(12)2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36551186

RESUMO

Augmented peripheral chemoreceptor sensitivity (PChS) is a common feature of many sympathetically mediated diseases, among others, and it is an important mechanism of the pathophysiology of heart failure (HF). It is related not only to the greater severity of symptoms, especially to dyspnea and lower exercise tolerance but also to a greater prevalence of complications and poor prognosis. The causes, mechanisms, and impact of the enhanced activity of peripheral chemoreceptors (PChR) in the HF population are subject to intense research. Several methodologies have been established and utilized to assess the PChR function. Each of them presents certain advantages and limitations. Furthermore, numerous factors could influence and modulate the response from PChR in studied subjects. Nevertheless, even with the impressive number of studies conducted in this field, there are still some gaps in knowledge that require further research. We performed a review of all clinical trials in HF human patients, in which the function of PChR was evaluated. This review provides an extensive synthesis of studies evaluating PChR function in the HF human population, including methods used, factors potentially influencing the results, and predictors of increased PChS.


Assuntos
Células Quimiorreceptoras , Insuficiência Cardíaca , Humanos , Células Quimiorreceptoras/fisiologia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Tolerância ao Exercício/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA